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The conditions for macroscopic segregation of A and B in a steady-state 
A + B ---, 0 reaction are studied in infinite systems. Segregation occurs in one and 
two dimensions and is marginal for d =  3. We note the dependence of these 
results on the precise experimental conditions assumed in the theory. We also 
note the difference between these results and our earlier ones for finite systems 
where the critical dimension is d = 2. 
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1. I N T R O D U C T I O N  

Diffusion-limited reactions in low-dimensional systems exhibit behavior 
very different from classical kinetics/~-1~ The reaction A + A ~ products, of 
relevance in a number of physical systems, (7'~~ exhibits nonclassical 
behavior for dimension d ~  2 (including fractal dimensions). (1-1~ The reac- 
tion A + B--,  products, of interest in chemical kinetics and in solid-state 
reactions, exhibits long-time anomalous kinetics and reactant segregation 
below dimension d=4.  (1'3'5) These results are for reactions of the "big- 
bang" type in which particle creation occurs only at the origin of time. 

Recent simulations have shown that segregation of chemical species 
over macroscopic distances occurs for steady-state A + B reactions. (8) The 
simulations start from zero density and thereafter A and B particles are 
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added to the system at a steady rate. The two species are added at random 
locations and times but always in equal numbers so that there are no 
fluctuations in the global density difference G ~ _  PA - PB - 0. The simulations 
appear to indicate an upper critical dimension d = 2  for macroscopic 
segregation.(8'12'~3) 

Recently we analyzed a set of reaction-diffusion equations for the 
A + B reaction in integer dimensions in the steady state and showed that in 
finite systems the critical dimensions is d = 2 .  (14) We found that 
macroscopic segregation occurs in one dimension and does not occur in 
three dimensions; in two dimensions the degree of segregation depends on 
the detailed parameter values. Since the simulations are also carried out in 
finite systems, the analytic results are in agreement with the numerical 
ones.(8) 

Herein we analyze the same set of reaction-diffusion equations in 
infinite systems. The behavior we find is quite different from that of the 
finite systems in two important respects. First, we find that there is no 
steady state in one and two dimensions (a steady state in two dimensions is 
recovered if one introduces a finite correlation distance in the deposition of 
A-B pairs~5)). Second, the critical dimension for macroscopic segregation 
is d =  3 rather than d =  2 (unless the above finite correlation distance is 
introduced~15)). Thus, segregation occurs in one and in two dimensions, but 
in three dimensions the degree of segregation depends on detailed 
parameter values. 

In Section 2 we present the reaction-diffusion equations and the 
constraints that we impose on the deposition of A and B molecules. In 
Section 3 we consider the equation for the difference in the local densities of 
the two species. We point out that the difference variable yields necessary 
but not sufficient conditions for segregation: the latter requires information 
about the total local density. In Section 4 we introduce a measure of 
segregation (x4'16) that includes the latter information and discuss the 
presence or absence of segregation in one, two, and three dimensions. 
Further conclusions are presented in Section 5. 

2. E Q U A T I O N S  A N D  C O N S T R A I N T S  

Let pA(r, t) and ps(r, t) denote the local concentrations of species A 
and B at time t. Unlike species annihilate one another upon (suitably 
defined) contact, ~17) 

A + B--* 0 (2.1) 

Both species diffuse with coefficient a and are created at random locations 
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and times. Earlier we used the following set of reaction-diffusion equations 
to describe this process(14): 

~SA(r, t) = aV2pA(r, t) -- F(pA, PB) + r/A(r, t) (2.2a) 

~B(r, t ) =  crV2p.(r, t ) -  F(p B, PA)+ qB( r, t) (2.2b) 

where r/A and q ,  are random source terms chosen from an appropriate 
ensemble. The local reaction is described by the symmetric function 
F(pA, p e ) = F ( p , ,  PA). The average number of A and B molecules is kept 
equal at all times, i.e., 

f dr pA(r, O) = f dr pB(r, 0) (2.3) 

fdr (q~(r, t ) )=f  ar (~(r, t)) (2.4) 

where the brackets denote an ensemble average. The constraint (2.4) is 
weaker than that used earlier, where the instantaneous total numbers of 
A's and B's were required to be equal in each member of the ensemble. 

The symmetry of the problem allows us to simplify the rate equations 
by introducing the sum and difference variables 

7(r, t ) =  �89 t ) -  pB(r, t)] (2.5) 

p(r, t) = �89 t) + pB(r, t)] (2.6) 

and similarly for q~(r, t) and qp(r, t). The difference variable then obeys the 
linear diffusion equation 

~(r, t) = aV27(r, t) + r/~,(r, t) (2.7) 

from which the reaction term is absent. The sum variable satisfies the non- 
linear reaction-diffusion equation 

/5(r, t) = ~rV2p(r, t) - F(p + 7, P - ~') + qp(r, t) (2.8) 

The constraints (2.3) and (2.4) imply that 

f d r  (7(r, t ) ) = f d r  (q~(r, t ) ) = 0  (2.9) 

at all times. 
Our intent is to establish whether macroscopic segregation of the 

chemical species can arise in this system. Such segregation might arise as a 
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consequence of the detailed interplay of the three counteracting 
mechanisms implicit in (2.2). Diffusion tends to mix the species. Reaction 
annihilates the thoroughly mixed regions, thus favoring spatially separated 
regions. The sources tend to create spatially nonuniform patches on a scale 
determined by the density and distribution of sources (this latter scale is in 
general much smaller than the macroscopic scales of interest for 
segregation). For sufficiently high dimension one expects diffusion to 
dominate and the spatial distribution of species to become uniform at long 
times. The interesting question is whether there exists a critical dimension 
below which macroscopic segregation occurs. 

Elsewhere (14) we have examined the question of segregation for 
systems of finite size (La). We found that the random deposition of A's and 
B's at uncorrelated locations (but subject to the equal number constraint) 
leads to a steady state in all dimensions. A steady state manifesting 
macroscopic segregation is obtained in one dimension (d=  1), marginal 
segregation is found for d =  2, and no segregation occurs for d~> 3. Note 
that these results require the equal-number constraint: if one allows instan- 
taneous fluctuations in the relative numbers to be created, then each system 
of the ensemble will ultimately become all of one species. Furthermore, the 
results also change if one correlates the locations of the particles being 
created(~S): in the limit of geminate creation there is no segregation in any 
dimension. (8) 

Herein we reexamine this problem when L --* oo. In this case we find 
that no steady state is established for d<~ 2, and hence the results for the 
infinite system cannot be obtained from those for the finite system by 
taking the limit L ~ ~ .  

3. D IFFERENCE V A R I A B L E  

There is, of course, no unique measure of the degree of segregation of 
the chemical system. The measures we choose are determined in part by the 
requirement of analytic tractability. A measure of the spatial variations in 
the difference variable that we introduced earlier is the correlation 
function (14) 

C~(r - r', t) -=/2a(7(r, t) y(r', t) ) (3.1) 

where l a is the volume of a unit cell in the corresponding d-dimensional 
discrete problem. (17) Note that this definition leads to the same units for C~ 
in all dimensions. Our first step is to evaluate this correlation function. 

To evaluate C~ it is necessary to specify the first and second moments 
of the source term tt~. These moments are a consequence of the spatially 
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and temporally random deposition of A's and B's subject to the constraint 
(2.4) or equivalently (2.9). For the first moment, (2.9) and translational 
invariance clearly imply that 

(q~(r, t ) )  = 0 (3.2) 

For the second moment in the infinite system one finds O7) 

(qT(r, t) r/~(r', t ' ) )  = (Rn/l a) 6 ( t -  t') 8 ( r - r ' )  (3.3) 

R is the total deposition rate of A and B molecules per unit cell l a, n is the 
average number of A and B molecules deposited in a unit cell in the time 
interval v, and A and B molecules are deposited at spatially random and 
uncorrelated locations that change every r units of time. The limit ~ ~ 0 in 
relation to other time scales has been taken in writing (3.3). 

The spatial Fourier transform of (2.7) according to the definition 

1 
f ( k )  = (2~)a/----- 5 f dr f ( r )  e (ik -r) (3.4) 

leads to an ordinary linear differential equation for ~(k, t) whose solution is 

~(k, t) = fo dt' e -~k2(' c)O~(k, t') (3.5) 

The initial densities of A and B have been set to zero. To evaluate the 
correlation function (3.1), we first construct the correlation function 
C~(k, k', t) of the Fourier amplitudes, 

(~y(k, k', t )=/2a(~(k,  t)~(k', t ) )  (3.6) 

which is easily evaluated using the double Fourier transform of (3.3): 

(0~(k, t) O~(k', t ' ) )  = (Rn/l a) 6(t - t') 8(k + k') (3.7) 

Inverse transformation of d'~(k, k', t) according to 

f ( r )  = ~  f dk f ( k )  e x p ( - k -  r) (3.8) 

then yields 

C ~ ( r - r ' , t ) = ( - ~ ) a  dk d t ' e x p [ - k ' ( r - r ' ) ] e x p ( - 2 ~ r k 2 t  ') (3.9) 



1434 West et  al. 

The k integration can be carried out explicitly in each dimension, while the 
time integration can be done in closed form in d = 1 and d = 3 but not in 
d = 2 .  

In one dimension one finds 

r (.-(x- 
C ~ l ) ( x - - x ' , t ) - ~ L t  e x p \  8at J 

-Ix-x' l  \8~J e r f c \ ~ j j  (3.10) 

where erfc(z) is the complementary error function. For  (x-x')2~> 8at, 
Eq. (3.10) decays as 

C~l,(x_x, , t )  ~ Rnl 4at 3/2 ( - ( x - x ' ) 2 . ~  (3.11) 
(2ntr) 1/2 ( x -  x')  2 exp \ / 8 a t  

The mean square value of the difference variable is independent of x and is 
given by 

Rnlt 1/2 
C~l)(/)  ~ C~l)(O, t) ~. (2~o.)1/2 (3.12) 

This boundless growth in time shows that, unlike in a finite system, a 
steady state is not achievable in one dimension. The behavior of (3.12) 
indicates a growth in the variability of the difference variable which is an 
indicator that segregation is possible, but in itself is insufficient t establish 
segregation. 

In two dimensions the result of doing the k integration in (2.9) along 
with a suitable change of variables yields 

C~2)(r_r,, t ) :Rn lS  f ~176 
4za Jt 1/2 

e x p ( - I r - r ' l  2 yS/8a) 
dy (3.13) 

Y 

For  (r - r ' )  2 >~ 80"/' one obtains 

c~2~(r  - r ' ,  t )  --, 
RnlZt (-Ir-r'l z) 

n I r - r ' l  2exp \ 8at (3.14) 

and for the mean square of the difference variable we obtain 

Rnl 2 
C~2~(t) = ~ In t ( 3 . 15 )  
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Again we find that no steady state is achieved, and that segregation is in 
principle possible due to the (slow) growth of the variability of the dif- 
ference variable with time. Note that any correlation in the deposition of A 
and B particles over a finite distance inhibits the divergence obtained in 
(3.15) and c a u s e s  C~2) ( t )  t o  achieve a steady state. ~5~ 

In three dimensions performing the two integrations in (3.9) leads to 

Rnl 3 erfc [ Ir - r'[/(8at) 1/2 ] 
(3) r / t ) -  

Cr ( - r ,  8ntr I r - r ' l  
(3.16) 

The two limiting forms of this expression are 

C~3)(r - r  ', t ) ~  Rnl3 (8at/zc)L/~ ( - I r -  r']2) 
8 ~  I r - r ' l  ~ exp \. ~ -  (3.17) 

for J r - i f [  >>8at, and 
R n l  3 

C~3)(r- r ', t) ~ 87ta [ r -  r'l (3.18) 

for [ r -  r'12~ 8at. The divergence in (3.18) is specious: if we average r' over 
a unit cell surrounding r, we obtain 5 

C~3)(t) - ~ 3 f,3 dr '  C~3 ' ( r -  r ', t)= Rnl-----~24o. (3.t9) 

Note that a steady state is thus achieved in three dimensions. 

4. A M E A S U R E  OF SEGREGATION 

Earlier we introduced a measure S(t) of the degree of macroscopic 
segregation as follows~ 

S(t) = (y2(r, t) )/(p2(r, t) ) (4.1) 

The maximum value of S(t) is unity, and S ( t ) ~  1 when essentially only 
one of the chemical species is present at r. On the other hand, S ( t ) ~  0 
indicates that the relative excess of one species over the other is vanishingly 
small. 

To find the value of S(t) as t ~ ~ we again select for the reaction term 
in (2.2) the form (14) 

F(pA, PB) = KpX p x (4.2) 

5 For convenience we integrate over a spherical volume. This choice affects the coefficient of 
(3.19) in a minor  way. 
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where K is a rate constant.  The order  X is positive and is usually chosen to 
be unity, but  we need not  as yet make this choice. Equat ion  (2.8) then is 

fi(r, t) = ~rV2p(r, t ) - K [ p 2 ( r ,  t ) - 7 2 ( r ,  t ) ] x +  qp(r, t) (4.3) 

To determine the mean square value (p2(r ,  t ) )  in (4.1), we find it 
expedient to make the replacement  

( [p2 ( r ,  t ) - 7 2 ( r ,  t)] x )  = [(pZ(r, t ) - 7 2 ( r ,  t ) ) ]  x (4.4) 

When X =  1 this is of course a tautology; for other  values of X this 
replacement introduces unknown errors that  are unlikely to modify the 
asymptot ic  time dependence of this term. We fur thermore  note  that 

(r/o(r, t ) )  = Ril e (4.5) 

The ensemble average of (4.3) with (4.4) and (4.5) then is 

(/5(r, t ) )  = aV2(p(r ,  t ) )  -- K [ ( p 2 ( r ,  t ) )  -- (72(r, t ) ) ] x + ~ a  (4.6) 

Consider the time dependences of the various terms in this equation. In all 
dimensions the source term is of O(t~ In one dimension ( ~ 2 ) ~  0(tl/2). 
Suppose (p ( r ,  t ) ) ~ O ( t  ~) with c~ to be determined. Then  (~(r ,  t ) ) ~  
O(t ~-~) and (p2(r ,  t ) ) ~  O(t2~), where again factorization is assumed not  
to change the asymptot ic  time dependence. Unless there are pathologically 
large spatial gradients (not observed in any simulations(8)), V2(p( r ,  t ) )  is 
at most  of O(t~). Balancing the powers of time that appear  in (4.6) and 
noting that  (p2(r,  t))~> (72(r, t ) )  leads, with X >  �89 to the unique choice 6 

c~ = 1/4 (4.7) 

resulting in 

(p ( r ,  t ) )  ,,~ t 1/4 (4.8) 

and the even stronger condit ion 

S(t) ,~  , 1 (4.9) 

6 If V2<p> = O(t~), then the above analysis requires X> �89 If V2<p> ~< O(t ~) with /3 ~< ~-�88 
then X is unrestricted (albeit positive). If W2<p> =O(t =) and X~<�89 the analysis is more 
complicated and the segregation index may not approach unity. This case seems not to have 
been observed in practice and we do not pursue it further here. 
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This indicates that there is asymptotic segregation in one dimension. 
Equations (3.10) and (3.ll)  show that the size of a region occupied by a 
large excess of one chemical species is diffusion dominated, i.e., of 
O[(8trt)l/2]. The other possible distance scale in the problem, the distance 
nl/Rz defined by the random distribution of source terms t/A and r/B, only 
affects the overall number of molecules present at any time, i.e., it appears 
only in the overall coefficient in (3.10). 

In two dimensions with (3.15), the leading terms in (4.6) with X >  �89 
can again only be balanced if 

(p(r, t))--~ln 1/~ t (4.10) 

and one obtains asymptotic segregation, i.e., 

S(t) t ~ '  1 (4.11) 

The size of the segregated regions is again diffusion dominated. We con- 
trast this two-dimensional result with the one obtained in a finite system: 
there we found a segregation index whose value depends on the detailed 
parameters of the problem and in particular on the relative rates of 
diffusion and reaction. We also mention that the result (4.11) is a con- 
sequence of our assumption of spatially random deposition of A's and B's 
with no correlation in the A-B distances. If one introduces a correlation in 
the A-B distances which remains finite as the volume of the system goes to 
infinity, then (4.11) does not hold and one recovers parameter-dependent 
results of the sort obtained for finite systems. ~ 

In three dimensions the mean square of the difference variable does 
not grow in time [cf. (3.18)] and the reaction-diffusion equations can be 
balanced with (p(r, t ) )  ~ constant in time as t ~ oo. A steady state is thus 
achieved. In this limit one expects that the spatial gradient term at any one 
position vanishes as t ~  ~ (i.e., a V 2 ( p ) ~  (p)/t), so that 

lira (p2(r, t ) ) ~  lim (72(r, t ) ) +  (R/13K) 1Ix (4.12) 
t ~ o O  t --~ o o  

and consequently 

S(t) ~ I1 
46/4-3/~-1 

+ R(1-x)/x -~-K-f/~ .j (4.13) 

Whether or not one observes segregation in three dimensions therefore 
depends on the detailed parameter values. In the simplest case (n=  1, 
J (=  1) the segregation index is determined by the ratio al/K, i.e., by the 
relative rates of diffusion and reaction. 
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5. C O N C L U S I O N  

We have explored the effect of dimensionality in infinite systems on the 
spontaneous segregation of chemical species A and B that react 
(A + B--, 0), diffuse, and are replenished at random temporal and spatial 
points. When the deposition of A's and B's is totally uncorrelated, then we 
find that in one and two dimensions there is no steady state and spon- 
taneous segregation occurs over regions whose size is diffusion limited. In 
three dimensions a steady state is established and it may be possible to 
observe marginal segregation if the rate of reaction is sufficiently high com- 
pared with the rate of diffusion. These results should be contrasted with 
those for a finite system, where the "marginal" dimension is 2, with definite 
segregation in one dimension but none in three dimensions. 

We make a final comment about the subtle interplay of diffusion, 
reaction, and deposition in the results obtained here and in our study of 
finite systems. It would be tempting to conclude that diffusion inhibits 
segregation by promoting mixing, and that one therefore obtains 
macroscopic segregation in lower dimensions but not in higher dimensions. 
This is not completely correct; diffusion (but not too much of it) is actually 
necessary to obtain macroscopic segregation: If there were none, then the 
spatial A - B  correlations would simply be those of the source terms, in our 
case C r ( r - r ' ,  t) oc cS(r-r ' )  as seen in (3.9) if a--} 0. One would thus not 
observe segregation in any dimension in the absence of diffusion. It is 
interesting to speculate what (perhaps fractal) dimension actually leads to 
maximal segregation. 
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